Collegiate Wind Competition 2017-2018

Market Team B1

Alana Benson

Anthony Cheslic

Craig Collins

Michael Vogelsang

Leo Segura De Niz Mitchell Green

- Structural and performance analysis of blades.
 - Lower Cp than expected. Higher TSR than expected.
 - Model does not account for pitch regulated systems.
 - Average power output ~3.65MW.

• Siting

- Wind Resource: 15.7 16.8mph average wind speed.
- Turbine Selection: 3 4.8MW off the shelf.
- # Turbines: 20 33 turbines for 100MW power plant output.

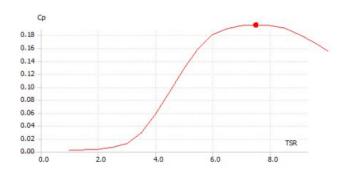


Figure 2: Cp vs TSR

Figure 3: Site Location

HR2: V2G and Design FEA

- V2G Simulink Model modified to match our population
 - o 1000 Electric Cars- 40MW Storage (1000X40kW)
 - Consumption and Energy Storage
 - o 150MW Residential Load (About 200,000 homes)
 - Usage profile with most the load in morning and evening
 - o 100MW Wind farm
 - Nominal Wind Speed of 13.2 m/s
 - Wind Speed from 0-25m/s
 - Scopes Show the System is usable
 - Coal and Diesel Power plants still in use

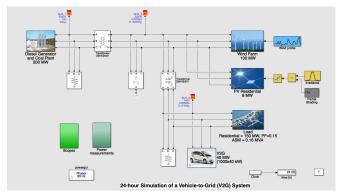
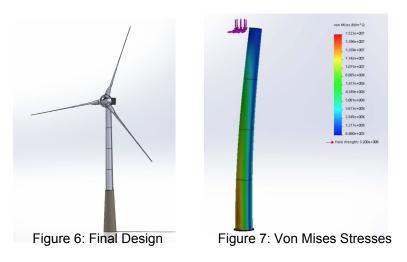



Figure 5: Modified V2G Model

Conceptual Design of 3.5 MW Wind Turbine Finalized with FEA

- 1.5 meter tower deflection at 25 m/s where braking is initiated
- Max stress of 152.3 MPa at base (Yield=500 Mpa)

Michael 3/12/18 CWC18 Market B1

HR2: Mitchell

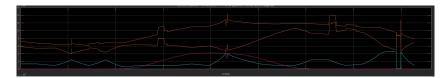


Figure 3: Results of V2G Grid Example

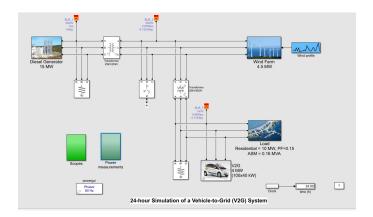


Figure 5: V2G Grid Example

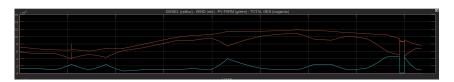


Figure 4: Adjusted Grid Example

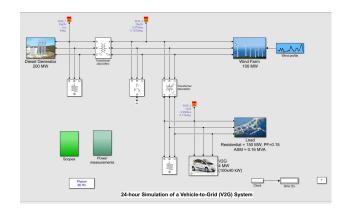


Figure 7:Adjusted Grid Simulation

HR2: System Advisory Model and Siting

System Advisory Model

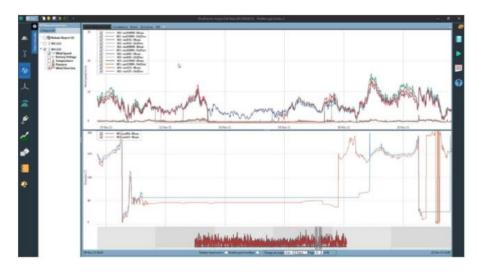

• Analysis created using business model, in order to create financial figures.

Table 1: User Defined Turbine Inputs	
Rated Output:	3500 kW
Rotor Diameter:	140 m
Maximum Cp:	0.20
Maximum Tip Speed:	80 m/s
Maximum Tip Speed Ratio:	7.8
Cut-In Wind Speed:	4 m/s
Cut-Out Wind Speed:	25 m/s
Drivetrain Design:	Direct Drive
Blade Design:	Advanced Design
Tower Design:	Advanced Design

Table 2: SAM Outputs	
Annual Energy Production (Year 1)	320,223,776 kWh
Capacity Factor (Year 1)	37.3%
Levelized Cost of Energy	6.62 cents per kWh

Siting Challenge

- Obtained wind resource data for planned area.
- WindFarmer Analyst Tutorials
- Meeting with Coconino County Community
 Development Advisory Group

Windfamer Theory important points:

- Input Files
- Energy Calculations
 - Net Yield calculations
 - Modeling Losses as efficiencies
- Wake Models
 - Modified PARK
 - Eddy Viscosity
- Turbulence Estimations
 - Can be designed around IEC standards
- MCP methods
 - Least Squares method
 - o PCA method

County Meeting Important Points:

- Windfarms and Met towers are processed as Conditional Use Permits (CUP's)
- The most important aspects to consider in this county are the environmental and visual aspects of the wind farm.
 - o Game and Fish
 - Photo-sims
 - Neighbor outreach
 - Motion sensor lights